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ON THE RIEMANN PROBLEM FOR LIQUID OR 
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SUMMARY 

Self-similar solutions to the Riemann problem for water with the modified Tait equation of state are 
presented. The methods of Smoller for gas dynamics are employed to reduce the problem to the solution 
of a single non-linear equation. The same methods are used for solving the Riemann problem at a gas-water 
interface. In both cases the method of interval bisections affords a solution technique free of problems with 
convergence. 
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1. INTRODUCTION 

The solution of the Riemann problem in gas dynamics is well understood. A typical reference 
which spells out the complexity and solution techniques for this problem is the work of Sod.' 
However, for liquid media such a fortunate state generally does not exist. Where the most 
general2 equation of state is employed, methods for solving the Riemann problem exactly are 
not yet known. The case where an approximate solution can be tolerated is investigated in 
Reference 3. 

The work of Hol14 establishes to a good approximation that a functional form equivalence 
exists between the wave relations for gas and water, where the modified Tait equation of state 
is e m p l ~ y e d . ~  This has led some investigators6 to conjecture that under the transformation 
P H P + B, y H N (where B and N are parameters of the equation of state for water), solutions 
of the Riemann problem for gas dynamics map into solutions of the Riemann problem for water. 
Thus codes for computer solution of the Riemann problem for gas dynamics can be simply 
adapted for use in water. 

The objective of this paper is to develop an exact Riemann solver for water. In particular, 
the Riemann problem at a gas-water interface will be solved both theoretically and numerically. 
By this means it becomes possible to compare results with that obtained by adapting to water 
a gas dynamics Riemann solver which is based upon the above mapping. Excellent agreement 
between results from the two approaches is obtained. 

2. THE GAS-WATER RIEMANN PROBLEM 

Consider an imaginary plane diaphragm separating a water state 1 from a gas state 4. If the 
diaphragm is suddenly ruptured, a rarefaction wave or a shock wave moves into the gas, 
separating it into states 3 and 4, while a rarefaction wave or a shock wave also moves into the 
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water, separating it into states 1 and 2 (see Figure 1). State 2, which is water, is separated from 
state 3, which is gas, by a contact surface C across which pressure and velocity are continuous. 

Now the Riemann problem which governs the nature of the solution after rupture of the 
diaphragm can be shown to have a self-similar solution (which is constant on straight lines 
through the initial discontinuity). The theory of self-similar solutions to the Euler equations 
guarantees that states 1 4  will have constant properties, the state boundaries will be linear and 
constant states are separated either by shock waves across which the Rankine-Hugoniot 
relations apply or by simple (rarefaction) waves across which isentropic flow relations hold. 

The gas-water Riemann problem ( R )  

Given states 1 and 4, find the possible states 2 and 3 such that the total solution 1-4 satisfies 
the Euler equations of compressible flow, with gas constitutive relations on one side and water 
constitutive relations on the other side of the contact surface C .  

Notes 

1. The velocities in states 1 and 4 are not necessarily zero. 
2.  When the velocities in states 1 and 4 are zero, (R) represents the hydrodynamic shock tube 

The solution to the Riemann problem (R) has been studied by Flores and Holt,’ who reduce 
it to the simultaneous solution of several non-linear equations. For some cases difficulty in 
obtaining convergence is experienced when these equations are solved by iterative means. 

In the present section it is shown that this Riemann problem can be reformulated in such a 
way that its solution can be reduced to the solving of one non-linear equation. This solution 
can be accomplished by the method of interval bisection and no difficulties with convergence 
are encountered. 

Some terminology is necessary. According to Figure 1, we shall refer to the left-propagating 
wave front separating states 3 and 4 as a 1-wave, while the contact surface separating states 2 

problem with gas driver. 

t 

Raref i  

\ 

Figure 1. The Riemann problem 
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and 3 is a 2-wave and the right-propagating wave front separating states 1 and 2 is a 3-wave. 
Given a particular left state U,,  the set of corresponding right states U ,  which are connected 
to this left state by either a shock, a contact surface or an expansion front will be referred to 
as 1-, 2- or 3-family. By searching for pressure, density and velocity relations across 1-, 2- or 
3-rarefactions and 1-, 2- or 3-shocks, the Riemann problem (R) can be expressed in a form 
readily amenable to numerical solution. 

For each particular family, generic left and right states U ,  and U ,  are assumed. If P ,  < P,, 
the wave front between states 3 and 4 is a 1-rarefaction; if P ,  > P,,  the wave front between 
states 3 and 4 is a 1-shock. Similarly, if P ,  > PI,  the wave front connecting states 1 and 2 is a 
3-shock; otherwise it is a 3-rarefaction. Since there must be a gas-water separation, the 2-family 
will always be a contact surface. 

The Rankine-Hugoniot jump conditions 

The Rankine-Hugoniot jump conditions across a shock wave in an ideal gas may be written as 

L L 
- c: + u: = - c; + u;. 
Y - 1  Y - 1  

(3) 

Here u = u - W ,  where W represents the speed of the shock, and subscripts 0 and 1 denote 
conditions on the left and right sides of the shock respectively. 

For water equation (1) is modified to 

P l U l U ,  - P O U O ~ O  = Po - PI, (4) 

whereas (3) is inapplicable. However, the modified Tait equation applies across either a shock 
or a rarefaction wave in the form 

PIP0 = ( P l / P o ) N ,  ( 5 )  

where N is a constant and P = P + B. 

may be used: 
Across an expansion wave the following Riemann invariants, valid for both gas and water, 

where the plus sign refers to 1-waves and the minus sign to 3-waves. For water N replaces y, 
with the speed of sound given by 

C2 = N P / p .  

3. CONTACT SURFACE RELATIONS 

In this section we derive the one-parameter families of relation U d U ,  = f ( x )  which determine 
the set of right states U ,  which are connected to a given left state U ,  through a 1-, 2- or 3-wave. 
These relations can be used to solve the gas-water Riemann problem completely. Likewise, 
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expressions for contact surface velocity and thermodynamic state emerge. For water the modified 
Tait equation of state 

p = Bc(P/Po)N - 11 (7) 

w o  = (P/Po)N7 (8) 

of course leads to the relation 

which holds across a rarefaction or a shock wave. 
It is assumed that the gas is ideal, so the eequation of state is given by 

P = p R T .  (9) 

This leads to 

PIP0 = (P /Po)y  (10) 

across a rarefaction wave, whereas the Rankine-Hugoniot relations (1H3) hold across shock 
waves. 

As previously mentioned, there are three families of functions which are intermediaries in 
describing the relationship between the gas state 4 and the water state 1. The first and third 
families describe the gas and water media, with shock or rarefaction waves depending upon the 
relative pressure distribution of the two sides. 

The relations across rarefaction waves for the first and third families will now be derived. For 
completeness the results for the gas dynamics case, although well known,* are also included. 

Rarefaction waves for  gas 

a parameter x, by the relation 
The derivation of relations across waves in a gas is presented by J. Smoller.' He introduces 

x1 = -In (P3 /P4)  2 0. (1 1) 

For the 1-rarefaction wave in the gas Smoller derives the relations (x, 3 0) 

P J P ,  = e P x ' ,  (12) 

pJp4 = e-x"y, (13) 

where 

Rarefaction waves for water 

For water the 3-family rarefaction wave satisfies (x3 < 0) 

P , / P 2  = ex', 
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where 

Also, 

with 

P = P + B ,  

B ,  = B / P l .  

1 + B ,  
P 2  e W X 3  + B ,  

u1 - u 2  2 1 + B ,  ---[( - ) -  13, 
C 2  N - 1 e - " ' + B ,  

- N - 1  
= ~- 

2N 

Shocks in gas 

Referring again to Reference 8, with x 1  < 0 and 

the l-family of right states connecting a given left state is given by 

P 3 / P 4  = ex', 

P 3  P + ex' 
p4 1 + flex" 
- 

Shocks in water 

Similarly, with x 3  < 0 the 3-family shock wave relations for water can be written as 

P J P ,  = ex', 

P ,  l + B l  
P2 e-") + B , '  

"=( 1 + B ,  ) , 
p 2  e - " ' + B ,  

_ -  - 

For the 2-family one should have the contact surface relations 

p2 = p3,  P 2 l P 3  = ex, u2 = u 3 .  
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Thus there emerge the combined one-parameter families for the gas-water Riemann problem 
which are listed below. 

Combined one-parameter relations 

I-family 

2-family 

3-family 

P 3 / P 4  = eCXI, (32) 

(33) 

where 
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From the above relations one has 

u1 - u4 = C2h3(x3) + C4h1(x1), 

"=( 1 + B ,  ), 
C, e - x 3 +  B1 

- - - - - - ,X3--XI Pl Pl p2 

p4 p2p4 
- , 

- f3(x3)ex2f1(x1),  
P1 P1 P 2 P 3  _ - - _ _ -  - 
P4 P t P 3 P 4  

x1 = x3 + In (P4lP1). 

Thus 
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(42) 

(43) 

(45) 

(46) 

(47) 

By substituting (47) into (48), the ensuing equation can be solved iteratively by the method of 
interval bisection to obtain x3. No convergence problems are experienced. The values of xl  and 
x2 follow from (46) and (47). Thus the gas-water Riemann problem has been solved. Equations 
(41) provide the contact surface velocity. Equation (38) yields the contact surface pressure. 

4. SOLUTION OF THE RIEMANN PROBLEM FOR WATER 

In order to apply Godunov's method to liquid media, the approach of Section 2 will now be 
used to develop the one-parameter families of shock and rarefaction relations which permit 
solution of the Riemann problem in water with the modified Tait equation of state: 

1-family 

P31P4 = eVx',  

P3 e - " +  B4 _ -  - 
P4 1 + B4 ' 

(49) 

e - x ~  + B4 1/N 
P3 

- P4 = fI(X1) = ( 1 + B 4 )  " 
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with 

2-$amily 

3- family 

where 

N - 1  ?=-* 
2N ’ 

x3 2 0, 

(54) 
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From the above relations one has 

Then 

By substituting (67) into (68), the ensuing equation can be solved iteratively by the method of 
interval bisection to obtain xj. No convergence problems are experienced. The values of x1 and 
x2 follow from (66) and (67). Thus the Riemann problem for water has been solved. Equations 
(61) provide the contact surface velocity. 

Special note 

For water-water situations, use of the same value for B on the two sides of a contact surface 
will not permit a density discontinuity in crossing the contact surface! Thus, if it is assumed 
that B is constant, choosing x2 = 0 and discarding (65) prohibits the appearance of a contact 
discontinuity. 

5 .  A WATER-ADAPTED GAS DYNAMICS RIEMANN SOLVER 

The relations given by (1  1 H l 5 )  and (23)-(26) form the basis for solving the classical Riemann 
problem for the ideal gas (see Reference 1 for further amplification). Also, relations (16)-(22) and 
(27H31) allow the construction of a Riemann solver code for water, which has been accomplished 
during the course of this research. 

However, in liquid media the omission of an expression for internal energy forces the 
Rankine-Hugoniot jump conditions to be employed in enthalpy form: 

continuity 

moment urn 

P ,  + p l v :  = P2 + p 2 v : ;  
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energy 

T.-J. CHEN AND C. H. COOKE 

h, + ~ : / 2  = h2 + 0:/2. (71) 

Here, as before, 

v = u - w .  (72) 

Moreover, Hol14 has shown that when the modified Tait equation of state is used, the enthalpy 
rise across a water shock, referred to in (71), can be well approximated by the relation 

Therefore, to a good approximation and subject to the assumptions of Holl’s der i~a t ion ,~  
equation (71) can be replaced with 

v: 1 4 c:+-= ~ c: + -. 1 _ _  
N - 1  2 N - 1  2 (74) 

Now the jump conditions (69) and (70) hold regardless of whether the medium is gas or liquid. 
Furthermore, for the case of an ideal gas equation (71) is equivalent to 

1 c; + 2 v2 = 1 c2 0: 
2 y - 1  2+y. 

Y - 1  
(75) 

It is noted that the respective formulae for the speed of sound for water and gas are 

C 2  = N P / p ,  (76) 

c2 = yP/p.  (77) 

P O P ,  N - y  (78) 

The conclusion is that the correspondence 

transforms gas shock relations to water shock relations. Of course, the same observation holds 
regarding relations across rarefaction waves. The outcome is that the following theorem has 
been established. 

Theorem 1 

To a good approximation the correspondence P O P ,  N o y  transforms the solution of the 
Riemann problem for water with the modified Tait equation of state into the solution of the 
Riemann problem for the idea gas and conversely. 

Lemma 1 

Any computer code which solves the Riemann problem for the ideal gas can be adapted via 
equation (78) to approximation of the solution to the Riemann problem for the ideal water 
(modified Tait equation of state). 
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Note 1 

For the Riemann problem at a gas-water interface it is shown in the sequel by numerical 
experimentation that the result of applying Theorem 1 and Lemma 1 leads to negligible difference 
in results from that of coding the bonda fide water Riemann solver determined by the relations 
of Section 3. 

6. NUMERICAL RESULTS 

In this section the method of Godunov6 and the techniques of Sections 2-4 will be used to 
simulate the solution to a certain spherical gas-water Riemann problem (see also References 7 
and 9). It is assumed that the Riemann problem results from the release into stagnant liquid of 
a sphere of gas initially at high temperature and pressure. Table I gives the values of the basic 
parameters of the problem. 

In what follows, all graphical results are non-dimensionalized as follows. Let (-) denote 
dimensional quantities and choose h = 1 ft as a characteristic length. All lengths are divided by 
the characteristic length R = Rfh, velocities are divided by the speed of sound in undisturbed 
water, u = u/a,; densities are given by p = PIP,; pressures are given by P = PIPo, where 
Pb = P ,  + B ;  P ,  = 1 atm in undisturbed water; and time is divided by h/a,, i.e. t = ;/(h/a,). 
The space step is either AR = 001 (coarse grid) or AR = 0.00125 (fine grid). For stability the 
time step is chosen to satisfy the condition 

max(lu1 + a)At/AR < 1 ,  

where a is the local sound speed. 
The Godunov method6 for solving the conservation law equations 

can be written as 

The flux Ff, is obtained through solving the Riemann problem@) 

over a uniform grid of mesh width AR. The Riemann problem (Sl) ,  (82) is solved separately (i) 
in the gas region, (ii) in the water region and (iii) for variable-size cells adjacent to the contact 
surface. Source terms not indicated by (81) are accounted for by the splitting technique elaborated 
in Reference 1. Solution of the Riemann problem(s) (81), (82) is accomplished by the methods 
of Sections 2-4. 

Results from numerical solution of the spherical gas-water Riemann problem are depicted 
in Figures 2 and 3. Two approaches are employed: (a) a bonajide Riemann solver is used for 
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Table I. Values of basic parameters 

Initial charge radius f ft 
Depth of charge centre 1 ft 

9000 atm 

1.4 

Initial pressure of explosion gas 
Initial temperature of explosion gas 2500 K 
Specific heat ratio of explosion gas 

Initial water pressure 1 atm 
Modified Tait equation of state B = 3268 atm, po = 1007 kgm-3, N = 7 

.I 4 

5 
YI 

n 

Ilntlial  I)ist.niicc ( r l . )  

Figure 2. Comparison of results for an exact versus an approximate Riemann solver for water (density) 

the water region; (b) the Riemann solver for the water side has been adapted from a gas dynamics 
Riemann solver according to the transformation of equation (78). The general quality of the 
results for density and pressure profiles shown in Figures 2 and 3 appears excellent. Mach 
number and velocity results (not shown) are equally pleasing. Moreover, it is clear that negligible 
error occurs as a result of the adaptation of the gas dynamics Riemann solver. 
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Figure 3. Comparison of results for an exact versus an approximate Riemann solver for water (pressure) 

7. CONCLUSIONS 

Methods for solving the Riemann problem for water and at a gas-water interface have been 
given. Numerical results confirm that the modified Tait equation of state allows the classical 
gas dynamic Riemann solver codes to be readily adapted to problems involving hydrodynamics. 
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